

BM3000 硬件安装 调试手册-CP

深圳市瑞雷特电子技术有限公司

深圳市宝安区 42 区兴华一路华创达中心商务大厦 A602 TEL: +86 0755-29563598 www.relatele.com

1 安装准备

1.1 安装技术准备

安装人员、技术责任人在施工前要认真熟悉设备安装说明,明确各设备怎样安装接线,更 具甲方要求安全施工,如遇问题及时与甲方沟通协商解决。

1.2 客户支持

需要提供电池监控主控模块的 IP 地址、主机安装位置、交流 220V 电源。

1.3 安装所需工具

施工组开工前工具准备情况,工具不齐不得开工。

工具清单:

序号	名称	附图	备注
1	棘轮扳手		拆装六角型蓄电池螺丝使 用,绝缘处理
2	电动螺丝批		拆装六角型蓄电池螺丝使 用,绝缘处理
3	活动扳手		固定机柜,以及拆装六角型 底线螺丝使用,绝缘处理
4	万用表		测量电压、电流等参数及线 缆连通性。经 MC 年度校验。
5	测线仪		测试网线,及通讯线的连通 性

BM3000硬件安装调试手册-CP

6	内阻测试仪		测试蓄电池的内阻。经 MC 年度校验。
7	电流钳表		测试电流检测精度与 UPS 状态。要求经年度 MC 校验。
8	电源插座		提供施工电源接入
9	笔记本电脑		数据调试
10	斜口钳		剪线
11	尖嘴钳		线缆制作
12	剥线钳		线缆制作
13	压线钳	· B. B.	压接通讯线、网线
14	螺丝刀(十字、一字)		固定系统模块
15	电笔	Contraction of the second	电力安全测量

1.4 施工辅料

名称	备注
水晶头(RJ45、RJ11)	通讯线连接
四芯电话线	通讯线
尼龙扎带	固定线缆
线槽 (线管)	布线
电池标签	给电池编号
电工胶布	对线缆接头及电池电极进行绝缘保护
抹布	擦电池及电池架上的灰尘

1.5 设备开箱检查

■ 外观检查

检查设备内外包装是否完好,有无破损、浸湿、受潮、变形等情况。

- 数量核对
 - > 以供货合同和装箱单为依据,检查设备、附件规格、型号、配置及数量。
 - 检查随箱资料是否齐全,如仪器说明书、用户手册、保修卡、合格证等,留一份 存档。

2 产品介绍

瑞雷特蓄电池在线监控系统采用单体式模块架构,通过电池传感器模块测试电池电压、温度、内阻,电流传感器模块测试组电流,主控模块负责所有数据的收集和处理,最终通过 RJ45 网线或 RS485 接口将电池数据上传到客户电脑的监控软件或动环平台。

2.1 系统简易拓扑图

BM3000硬件安装调试手册-CP

3		电流检测模块(IS)
4		电流传感器
5	N. C.	1#电池连接线
6		2#通讯线
7		4# 电源线
8	6	5#电流检测模块电源线
9	V	3#电流检测模块数据线
10	& 8	
11	Č.	水晶头

2.2 主控模块介绍

relat

BM00CP 主机是整个蓄电池监控系统的核心组件。主要进行蓄电池数据的收集、处理上传 等工作,另外也为部分模块组件提供直流电源。用户可通过模块配备的按键和液晶显示屏查 询单电池或电池组的详细数据,以及修改相关配置。以下详细介绍内阻监测管理单元的硬件 方面内容。关于软件界面操作详见本手册第4章。

结构说明

BM00CP 主机结构为长*宽*高 442*191.68*44.40,高度 1U,标准服务器机柜安装尺寸。

绿灯闪烁,说明主机电源开关已经打开,系统正在运行。

⑤ 内阻测试:

蓝灯常亮,说明系统正忙,正在测试内阻。

6 RBUS-1:

绿灯闪烁,说明 RBUS-1 端口正在通信。其中左侧为 RXD 接收数据,右侧为 TXD 发送数据。

⑦ RBUS-2:

绿灯闪烁,说明 RBUS-2 端口正在通信。其中左侧为 RXD 接收数据,右侧为 TXD 发送数据。

(8) RS485:

绿灯闪烁,说明 RS485 端口正在通信。其中左侧为 RXD 接收数据,右侧为 TXD 发送数据。

9 显示屏:

用于显示电池具体参数,告警以及主机配置版本等信息。

接口描述

① RJ45 网口:

可通过网线接入网络,连接电脑 WEB 配置或者接入动环(10M/100M 自适应)。

② RS485-1/2 端口:

485 接口,可接动环,(波特率 9600, MODBUS 协议)。

③ 传感器通讯 R-BUS □ 1/2:

电池传感器模块、电流检测模块环回接入口,在使用过程中必须先接满 R-BUS1 口 254 节模块后在多的模块在接入 R-BUS2 口。

④ 干接点4路:

4 路干接点,系统在没有告警的时候为断开状态,有告警的时候闭合,分别对应 4 台设备。

⑤ 直流 12V 输出:

DC12V 直流输出,最大输出功率 25W,给电流检测模块供电用(不建议给其他设备 供电,给其他设备供电可能会导致未知故障)

⑥ AC220 供电输入:

标准国标 AC220 供电接口,范围为 85~264VAC/120~370VDC。

⑦ USB □:

USB 接口,目前仅能供给系统固件升级使用。

⑧ SD 卡插口:

可插入 SD 卡,存储历史数据,功能暂未开放。

按键说明

① <电源>键:

控制主机电源开关,按下可开关机主机。

② <旋钮>键:

控制界面光标。顺时针旋转光标向下或数值增大,逆时针旋转光标向上或数值变 小,按下与<确定>键功能相同。

③ <确定>键:

对修改内容进行确认,在界面修改了任何参数后按此按钮进行确认。

④ <返回>键:

换回上一界面,修改任何参数后可以直接按此键退出。

2.3 电池传感器模块介绍

电池传感器模块主要完成对蓄电池的电压、温度、内阻参数测试工作。在接收到主控模 块发出的测试命令后既启动相应测试,测试完成以数据的形式返回给主控模块。测试回路与 通讯回路采用光电隔离,确保用户系统安全。电池传感器模块由纹波电流供电,功耗极低 (<0.2W),对电池影响可忽略不计。

结构说明

电池传感器模块外壳采用防火塑料材质,长*宽*高 60.40*58.6*28mm,采用魔术贴粘贴 方式固定在电池侧面或上面。

电池传感器模块主要由 2 种接口,接口 1 接 1#电池连接线、接口 2 接 2#通讯线。

2.4 电流检测模块介绍

电流检测模块配合电流传感器(外购)负责处理电流传感器测得电流信号,通过 R-BUS 总线送出数据。尺寸和电池传感器模块一致。

接口描述

连接方式

电流检测模块各接口连接如下图所示:

BM3000硬件安装调试手册-CP

Ъ <u>г</u>	4)			4	0			
实时监控	告警查	询 历史	と数据	图表分析	充放历史	分析报告			
吉果 起始时间 1017/9/20 18:	结束时i 2017/9/	搜索 站点:	ghi	2		ups1 •		Q	查询(S) 🎍 导出
			12017/9/10	::00:00	」 结束日期:	2017/9/20 23:59:59	▲ 和度: 杪 ▼		
		祖申は 一 设备名称		总电压		总电流	环境温度	串电流一	串电流二
		ups1		15.68	33 V	5.09 A	30.86 ℃	2.68 A	2.40 A
		ups1		15.68	33 V	5.10 A	30.86 ℃	2.70 A	2.40 A
		ups1		15.68	33 V	5.11 A	30.86 ℃	2.70 A	2.41 A
		ups1		15.67	77 V	5.08 A	30.86 ℃	2.69 A	2.38 A
		ups1		15.67	77 V	5.10 A	30.86 ℃	2.68 A	2.41 A
		ups1		15.67	77 V	5.11 A	30.86 ℃	2.68 A	2.42 A
		ups1		15.67	77 V	5.11 A	30.86 ℃	2.68 A	2.41 A
		uns1		15.67	7 V	5.11 A	30.86 ℃	2.69 A	2.41 A
		每页60条,共	1986条,当前第	有1/34页				* *	
		図形 19 三 19 三 19 日 14 日 14 14	5.8 5.6 5.4 5.2 15 15 4.8 4.6	201:38 19:1	12:16 19:22	55 19:33:33 19:44	:12 19:54:50 20:05:29	20:16:07 20:26	

监控软件具有远程数据,报表,充放电曲线,分析报告查看等,具体操作见软件使用 说明。

3 电池监控设备安装

3.1 安装流程

为保证施工安全, 需严格按照下流程图施工!

3.2 详细接线图

系统连线详细拓扑图如下所示:

主控接口接线图如下所示:

3.3 详细施工步骤

3.3.1 电池编号

relat

安装前需对电池进行编号。假设电池组为 2 组 32 节电池,第一组电池最负端的第一节 电池为 1-1 号电池,对应 1#模块,第 32 节电池为 1-32 号,对应 32#模块;第二组第一节电 池为 2-1 号电池,对应 33#模块(32+1),第 32 节电池为 2-32 号,对应 64#模块,依次类推。 必须严格按照此方法给电池编号。编号时将对应的标签贴到蓄电池外壳容易看见的位置,必 须整齐美观。

当主机接入多台 UPS 时,需按照上述步骤重新开始编号。

BM3000硬件安装调试手册-CP

3.3.2 安装垫片

断开电池组开关,万用表测量确认电池与电池架间无电压差,确认电池脱离 UPS 后, 用棘轮扳手将电池螺丝拧下,插入双耳垫片后将螺丝拧回,确保螺丝拧紧。完成一组电池的 垫片安装后逐一检查两点:1.螺丝是否拧紧。2垫片耳朵朝向与安装位置是否正确。检查完 毕后合上电池开关,万用表测试电池进入充电状态后再按相同步骤操作下一组电池。

垫片安装位置如下图:

需要注意垫片需装在电池连接线端子的外侧或者对面,不允许装在电池连接线端子和电 池端子的中间!如下图所示:

3.3.3 电池连接线安装

每节电池上需安装一根电池连接线,红色线的端子安装在电池正极的垫片上,黑色 线的端子安装在电池负极的垫片上。

3.3.4 电池传感器模块安装

relat

选择电池合适的位置安装电池传感器模块,通过模块自带的双面胶粘贴在电池的正面或 侧面,如空间不合适可粘贴在电池架上①。注意安装在正面时不能将电池的安全阀遮住,固 定好模块位置后,将电池连接线插头插入电池传感器模块 J1 端口。此时模块已通电工作, 绿灯应间隔闪烁。

模块侧面有对应的编号,安装时对应好电池编号,(如一台 UPS 2 组 32 节电池,模块 1#对应电池 1-1,模块 32#对应电池 1-32,模块 33#对应电池 2-1,模块 64#对应电池 2-32)。

当接入多台 UPS 时,请查看模块配置,模块最多配置 2 串 1~254#,从第一串 1#模块开始对应 UPS1-1,将本组模块依次接完,之后再次从新的一串 1# 模块开始依次接入,直到所有的模块一一对应接入。

备注: 当一串模块数量为 254 满组时,在两串交接处可能会位于某台 UPS 中间,此种 情况无需理会,软件中已做区分。

3.3.5 电流传感器和电流检测模块安装

电流检测模块可安装在电池架或者电池上,靠近电流传感器位置。电流检测模块数据线接电流传感器 6PIN 接口,电流检测模块电源线 A 接 DC12V 电源,电流检测模块电源线 B 接 第 2 个电流检测模块,通讯线连接电池传感器第一个或最后一个模块。

电流传感器科嵌在电池组正极线缆上,用扎带与线缆固定好,位置也可以是电池组中的 任意位置,但是电流传感器上的方向箭头必与电池组充电电流方向一致,也就是指向正极。

3.3.6 安装通讯线

模块全部固定好后,将通讯线将模块依次连接好,第一串单独 1~254 号模块串成一组,接入 RBUS-1 口;第二串 1~254 号单独串成一组,接入 RBUS-2 口。将通讯线整形成 90°直角或者半圆,如下图所示:

BM3000硬件安装调试手册-CP

3.3.7 安装主控模块

主控模块可安装在标准机柜中,如下图所示:

主控模块通过 R-BUS 口与电流检测模块电池传感器模块通信,通讯线将每个电池传感器 模块与电流检测模块串联然后接到主控模块 R-BUS 口上,形成一个环回,头尾接入主机。主 机同一通道下两个 RBUS 口没有顺序之分。

此款主机可最多监控4台UPS,当接入多台UPS或模块总数大于254时,无需区分UPS, 请将第一串单独1~254号模块串成一组,接入RBUS-1口;第二串1~254号单独串成一组, 模块接入RBUS-2口。电流模块串入相应的电池组中即可。

3.4 安装完善

电池监控设备安装完后,现场走线尽量做到清晰美观,通讯线安装好后,尽量整理成直 角货弧形,电池连接线用扎带固定好,不应看上去杂乱无章。

有需要从地板下或桥架的走线,需要征求用户意见时候加装穿线管,保证安装安全和美观。

4 系统调试流程

系统安装完后需进行简单调试工作,进行基础调试工作后这个蓄电池监控系统才算是安 装完成。请按以下操作流程调试设备。

4.1 系统通电前测试检查

安装完后通电前采用逐级方式测试设备 DC 电源输出源头的电压正负极有没反接,确保 设备数据电压没有错误导致设备损坏。

4.2 实时数据查询

主控模块可直接查看被监测电池的实时数据,安装完后开机可查看电压,温度,电流,数据有没有遗失或出现错误的值。

主界面菜单→ 1.数据查询→组 X(X 代表某台 UPS),可查询电池的组电压,组温度,单电压,单温度。

如存在故障请查阅"BM3000常见问题解决方案"或咨询相关人员。

4.3 告警查询

主控模块可直接查看被监测电池有出现哪些告警信息。

主界面菜单→ 1.数据查询→组 X(X 代表某台 UPS),可查询电池的组电压,组温度,单电压,单温度。

当电池组、电池串、单电池的各个值超过设定的阈值报警时,对应的电池组、电池串、 单电池数据后会显示"!"。

如仍然有未知告警,请连接"BMS 蓄电池在线监测软件"查看具体告警条目,具体操 作请见软件使用说明。

如存在故障请查阅"BM3000常见问题解决方案"或咨询相关人员。

relat

4.4 内阻测试

正常安装完成后系统是不会显示内阻,需进入系统设置进行手动内阻测试,内阻才能显 示出来。

主界面菜单→ 2.内阻测试→组 X(X 代表某台 UPS): 启动后内阻将会刷新出来,系统默 认是一个月自动测试一次内阻。每次仅能测试一台 UPS 的内阻,如需测试多组请等待当前 UPS 测试完成。

注: 默认密码为"2478"。

4.5 内阻告警值修改

内阻测试完后,查看内阻值没有问题,需要修改内阻上限告警值为现场实测值的 1.5~2 倍。

主界面菜单→ 3.系统设置→输入 "2478" →3.告警设置→组 X→内阻高,单位 mΩ,即 实际值为 4mΩ,此处填入 6~8mΩ即可。

也可在 web 配置端修改,具体操作方法见 6.1。如下所示:

		单组配置		~
电池类型:	2 V	电流传感器类型:	100 🗸 A	
电池容量:	200 Ah			
充电阈值:	10 A	放电阈值:	2 A	
	01 02 03 04 05			
	06 07 08 09 10			
	11 212 13 14 15		17 町	
内呾测试周期:	16 17 18 19 20	内阻测试时间:	10 分	
	21 22 23 24 25			
	26 27 28 29 30			
	31			
充电电流上限:	130 A	放电电流上限:	100 A	
组电压上限:	50 V	组电压下限:	1 V	
环境温度上限:	70 ℃			
单体浮充电压上限:	2350 mV	单体浮充电压下限:	1850 mV	
单体充电电压上限:	2350 mV	单体充电电压下限:	1850 mV	
单体温度上限:	50 °C			
单体放电电压下限:	1850 mV			
单体内阻上限:	10 mΩ			
单体内阻变化率上限:	200 %			
电压不均阀值:	20 %	内阻不均阀值:	30 96	
		「読取」 一号入		

4.6 基准存储

内阻测试完后,查看内阻值没有异常,须将内阻存储下来作为出厂内阻,以后测试的内 阻值将和存储的基准内阻对比得到内阻变化率。

主界面菜单→ 3.系统设置→输入 "2478" →4.基准设置→组 X→是/否。每次仅能存储 1 台 UPS 的值。

5 接入第三方监控系统

5.1 网口接入

主控模块带有 LAN 口,用户可通过网口接入第三方监控平台,支持 Modbus/RTU, Modbus/RTU 协议,具体通讯协议文件见 "BM00CP_modbus 寄存器表 V1.0"

主机 IP 查看与修改: 主界面菜单→ 3.系统设置→输入"2478"→5.网络设置。

也可在 web 配置端修改,具体操作方法见 6.1。如下所示:

	网络配置	
IP地址:	192.188.2.11 子网接码: 255.255.255.0	
网关地址:	192.183.2.1 調日号: 80 (建议80)	
	減取して見た。	

5.2 串口接入

主控模块带有 RS-485 接口,用户可通过网口接入第三方监控平台,支持 Modbus/RTU 协议,具体通讯协议文件见 "BM00CP modbus 寄存器表 V1.0",具体参数如下:

通讯模式: RS-485。

波特率: 9600bps

主控模块地址查看与修改: 主界面菜单→ 3.系统设置→输入 "2478"→1.单组设置→组 X→M-ID。

主界面菜单→ 3.系统设置→输入 "2478" →7.协议设置→RTU/TCP 可切换通讯协议。 也可在 web 配置端修改,具体操作方法见 6.1。如下所示:

UPS1	UPS2 UPS3 UPS4		
C	Modbus 地址:	1	分担促量
	起始模块通道号:	1	结束模块透道号: 1
	起始横块ID:	1	结束模块ID: 14
	本组电池数:	14 节	串款: 1 (1~6)
	1串电流模块ID:	1	2 年电流模块ID: 1
	3串电流模块ID:	0	4 率电流模块ID: 0
	5串电流模块ID:	0	6串电流模块ID: □
			減取 夏入

本设备最多可接入4台UPS,也对应4个 ModBUS-ID。

5.3 干接点接入

主控模块带有四个常开告警干接点,干接点组大耐压 125VAC/0.5A,24VDC/1A。4 个干接点对应 4 台 UPS 设备。

6 Web 端配置

BM00CP 支持通过网口在线远程修改内部配置和设定告警上下限阀值,同时能远程启动内 阻测试。

方便用户在配置变更时对主机进行修改。

6.1 WEB 配置前提

使用网络 Web 端配置 BMOOCP 主机前,需将 BMOOCP 主机连接至网络,并保证本台电脑与 BMOOCP 主机在同一网关内且地址不冲突。

点击 BMO0CP 主机主界面菜单→ 2. Config→1. Normal 选项,可查看具体网络配置信息。

点击 BM00CP 主机主界面菜单→3. Operate→3. Resat 选项,可恢复网络配置信息为以下默认值:

IP 地址(IP Address)	192.168.001.100
子网掩码(IP Mask)	255.255.255.000
默认网关(Gateway)	192.168.001.001
端口(Port)	80

6.2 进入 Web 配置端

确认网络连接与配置信息无误后, 在浏览器地址栏输入 IP 地址与端口号。当端口号为默 认值 80 时,可省略端口号输入(IE 默认端口为 80),改变端口后, 需在 IP 地址后添加": 端口号"。

如连接不成功,请检查网络连接与配置信息是否正确。

蓄电池在线监测系统-系统	AIE × +		
$\leftarrow \rightarrow$ C \textcircled{a}	Q http://192.168.1.100:80	ź II\ ⊡ ≡	

6.3 Web 端配置

Web 配置端依次分为网络配置,组参数配置,UPS1[~]UPS4 配置(分组设置,单组配置)。整

体配置方式如下:

- 第一步: 点击读取按钮, 读取主机配置;
- 第二步:填写需要改动的选项;
- 第三步: 配置完成后, 点击写入按钮, 写入配置。

7 全部菜单功能说明

功能目录	子目录	功能说明
	电压	可查看电池组,电池串,单电池电压实时数据、告 警信息
	温度	可查看电池组、单电池温度、告警信息
粉捉本海	内阻	可查电池组电池的内阻、告警信息
	内阻变化率	可查电池组电池的内阻变化率、告警信息
	电流	可查电池组总电流、串电流、告警信息
	~	可查看电池组当前容量(SOH)、健康度(SOC)、剩
	台里	余使用时间(LeftTime)
内阻测试		手动测试内阻
	分组设置	可查看与修改电池总数、启用组数
		起始结束模块 ID、起始结束通道号、Modbus ID、
	单组设置	电池电压类型、电流传感器类型、电池容量、电池
		总串数
		可查看与修改电池告警阈值配置,充放电阈值、充
		电电流上限、放电电流上限、组电压上限、组电压
		下限、组温度上限、单体浮充电压上限、单体浮充
	告警设置	电压下限、单体充电电压上限、单体充电电压下限、
系统设置		单体放电电压下限、单体温度上限、单体内阻上限、
		单体内阻变化率上限、电压不均百分比上限、内阻
		不均百分比上限
	基准设置	存储基准内阻值(第一次安装后需要操作)
	网络设置	可查看与修改本机 IP、子网掩码、网关、端口号
	声音设置	可关闭打开蜂鸣器
	协议设置	可查看与修改本机通讯协议模式 (RTU/TCP)
	本机信息	可查看本机时间、版本号、本机 MAC、错误编码
	恢复出厂	恢复(网络信息)为出厂设置

8 附录1

8.1 默认阀值

例如: 2V=2V*1(单体电池格数) 6V=2V*3(单体电池格数) 12V=2V*6(单体电池格数)

单位换算: 1V=1000mV

名称	2V	6V	12V
标称放电电压(mV)	1850mv	5550mv	11100mv
标称浮充电压(mV)	2350mv	7050mv	14500mv
浮充电压上限(mV)	2350mv	7050mv	14500mv
浮充电压下限(mV)	2150mv	6450mv	12500mv
充电电压上限(mV)	2350mv	7050mv	14500mv
充电电压下限(mV)	1850mv	5550mv	11100mv

注:以上为我公司根据电池规格书和经验结合设定的值,仅供参考!不建议将值设置在 上表以外。