蓄电池在线监测系统

用户手册

前言

手册说明

本文档用于指导您如何正确安装、配置、管理和维护本产品。请先阅读本文档,在进行操作。

目标读者

本文档目标读者为需要使用本套系统的用户, 读完本文档能使用及简单维护本系统。

内容简介

本文档各章节内容如下:

章节	名称	内容
第一章	产品概述	介绍产品架构,外观。
第二章	系统结构	了解系统架构。
第三章	硬件安装	介绍系统操作。
第四章	系统使用	介绍主机系统设置。
第五章	系统配置模式	如何进入系统配置,和功能使用。
第六章	告警门限设置说明	如何设置系统的告警上下限。

本书约定

图形界面格式约定:

格式	意义
<>	带尖括号"<>"表示按钮名,如"单击<确定>按钮"。
r.1	带方括号"[]"表示窗口名、菜单名和数据表,如"弹出[新建用户]窗
[]	口"。
,	多级菜单用"/"隔开。如[文件/新建/文件夹]多级菜单表示[文件]菜单下
/	的[新建]子菜单下的[文件夹]菜单项。
	简单的操作步骤间用"→"连接,如"告警查询→历史告警查询"表示
7	先选择告警查询菜单,在选中其中历史告警查询。

环境保护

本产品符合关于环境保护方面的设计要求,产品的存放、使用和放置应遵照相关国家法律、法规要求进行

安全信息

危险注意事项

只有经过许可的人员方可安装和调试设备。

使用正确的电源接入线、避免火灾。

避免输入电压过载。

避免点击,禁止接触手册中标有危险告警指示的端子和连线。

不要在湿度超过95%的地方使用设备。

不要在海拔高于6000米的地方试用设备。

设备损害事项

设备必须使用正确的输入电压。

设备出现故障后要及时提交维护申请。

禁止打开设备机箱,特别是设备通电情况下。

安全标示

在设备有告警表示的地方请务必参考用户手册。

请格外注意以下标志, 违规操作将给客户带来危险。

DANGER High Voltage

认证

本设备通过 CE 认证。

目录

第一章	产品概述4
1.1	系统功能4
1.2	具备特点4
1.3	硬件组成5
1.4	技术规格5
第二章	系统结构6
2.1	系统架构6
2.3	远程监测软件(选配)
第三章	硬件介绍8
3.1	主控模块介绍8
3.2	电池传感器模块介绍g
3.3	电流检测模块介绍11
第四章	系统使用13
4.1	数据查询13
4.2	告警查询17
4.3	系统设置18
第五章	系统配置模式26
5.1	进入配置界面26
5.2	各项说明27
5.3	修改模块 ID28
5.4	修改配置信息29
第六章	告警门限设置说明31

第一章 产品概述

1.1 系统功能

BM3000 蓄电池在线监测系统是一套在线式智能全自动电池性能监测系统,相比上一代集中式监测系统更安全、更简便、更可靠、精度高、实用性更广等优点。

系统主要由 BM00CS 主控模块、BM3KRS 电池传感器模块、BM00IS 电流检测模块三部分构成。可监测常用的 2V,6V,12V 蓄电池,电池容量可达 3000AH,电池组的总电压可以覆盖 48V,110V,220V,400V 等各种范围,满足绝大多数用户要求。

系统安全可靠、功能全面、扩展性好,已在各大银行和数据中心使用,获得用户高度认可。

1.2 具备特点

采用交流测试方法,进一步有效揭示电池性能特性和老化趋势。

系统采用比直流放电法小很多的测试电流,对电池没有损害。

测试系统对电池组组装和运行环境没有影响。

采用光电隔离测试技术和多重保险保护。

实时监控电池电压和电流。

自动巡检, 免维护, 高速、可靠。

数据采集频度可达 10 秒一次。

交流内阻可根据需要每天甚至每小时上报。

多种多样的事件管理和告警判据设置。

详细的历史数据记录,提供维护分析事实。

以太网网络化管理, 有利于扩容和集中监控。

可选无线通讯报警,利用手机等移动设备进行维护。

具备干接点输出。

符合 IEEE1188 规范推荐的电池维护方式。

采用 RTU 模式的 MODBUS 协议为通讯协议。

1.3 硬件组成

BM3000 蓄电池在线监测系统由一个主控模块、若干个电池传感器模块(与电池数 量相同)和若干个电流检测模块(与电池组数相同)构成。

主控模块:逐个从电池传感器模块收集电压、内阻和温度值,并进行分析处理显示。 电池传感器模块: 监测单节电池的电压、内阻和温度,并通过 R-BUS 口将数据上传 给主控模块。

电流检测模块:负责检测每组电池的组电流和组温度,每组电池配一套,通过 R-BUS 通信口上传数据到主控模块。

主控模块(CS)

电池传感器模块 (RS) 电流检测模块 (IS)

每个电池配一个电池传感器模块,监测电池电压、温度、内阻,电池传感器模块通 过一条通讯线相互连接后接到主控模块。

1.4 技术规格

BM3000 蓄电池监测系统技术规格如下:

工作环境: 温度: -5℃~50℃/湿度: 5%~90%

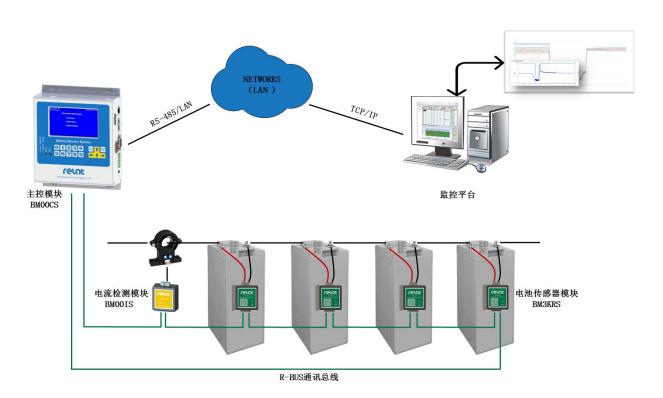
电源要求: 24VDC, 100-240VAC

监测能力:每台最大为254节,最多6组

监测范围: 2V、6V、12V 电池

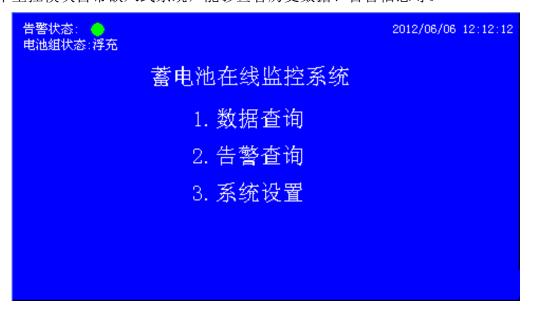
电压测量精度: 1.5V~5V,±0.2%+1mV/5V~16V,±0.2%+10mV

内阻测量精度: $0.01m\Omega \sim 80 m\Omega$, $\pm 2\%$ (重复精度)分辨率为 $2u\Omega$

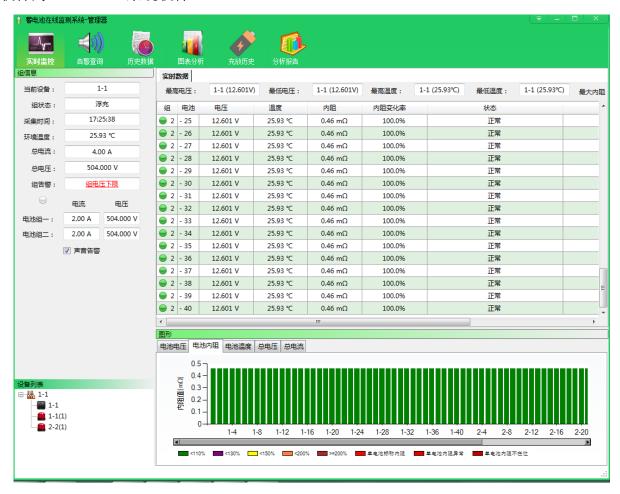

温度测量精度: -10℃~70℃, ±1℃

电流测量精度: 0-1000A (可选), ±1A%

第二章 系统结构


2.1 系统架构

每个电池配一个电池传感器模块,监测电池电压、温度、内阻,电池传感器模块通过一条通讯线相互连接后接到主控模块。

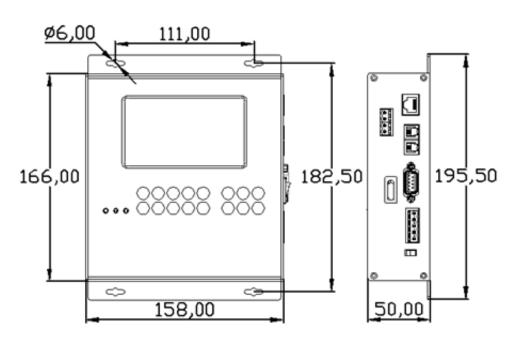

2.2 系统软件

每个主控模块自带嵌入式系统,能够查看历史数据、告警信息等。

2.3 远程监测软件(选配)

系统配置有专业的远程电脑端监测软件,可以搭配软件进行多台设备远程管理, 软件为 WINDOWS 系统软件。

远程监测软件多站点监测示意图:


第三章 硬件介绍

3.1 主控模块介绍

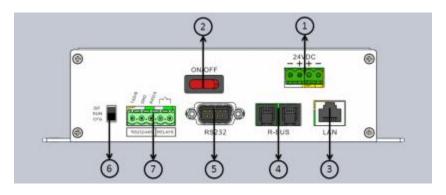
主控模块为整套系统主要组件,负责进行数据收集、数据处理等工作,用户可通过主控模块屏幕查询单体电池或电池组详细数据。

3.1.1 结构说明

主控模块结构为长*宽*高 158mm*195.5mm*50mm, 体积较小适合安装在各种环境。

3.1.2 指示灯说明

ALARM: 常亮红色,有告警,电源开关打开。

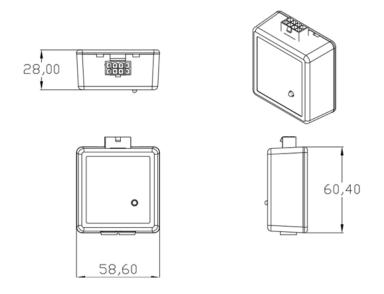

RUN: 常亮绿色,没有告警,电源开关打开。

COM: 常亮绿色主控模块没有监测到下面模块, 常亮绿

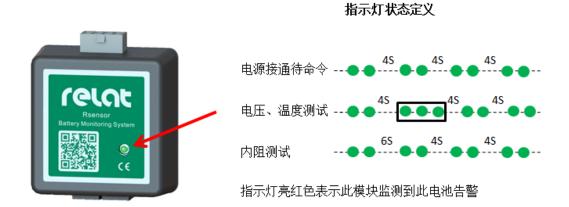
色闪烁有监测到下面模块。

LAN: 常亮绿色有连接设备, 不亮没有连接设备。

3.1.3 接口描述


- ① 直流 24V 输入输出。
- ② BM00CS 电源开关。
- ③ 网口输出。
- ④ 传感器通讯连接口。
- ⑤ RS232 配置端口,可进行 BM00CS 参数配置,同上位机通讯,和 ISP 加载。
- ⑥ 配置开关,ISP 程序加载,RUN 正常运行,CFG 系统配置。
- ⑦ RS485 和干节点输出。

3.2 电池传感器模块介绍


电池传感器模块主要完成对蓄电池的电压、温度、内阻参数测试工作。在接收到主控模块发出的测试命令后既启动相应测试,测试完成以数据的形式返回给主控模块。测试回路与通讯回路采用光电隔离,确保用户系统安全。电池传感器模块由纹波电流供电,功耗极低(<0.2W),对电池影响可忽略不计。

3.2.1 结构说明

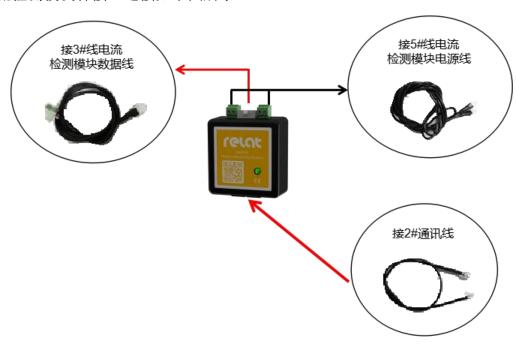
电池传感器模块外壳采用防火塑料材质,长*宽*高 60.40*58.6*28mm,采用魔术贴 粘贴方式固定在电池侧面或上面。

3.2.2 指示灯说明

3.2.3 接口描述

电池传感器模块主要由 2 种接口,接口 1 接 1#电池连接线、接口 2 接 2#通讯线。

3.2.4 连接方式



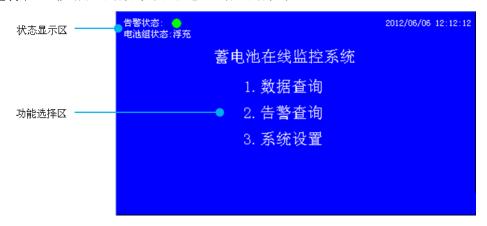
3.3 电流检测模块介绍

电流检测模块配合电流传感器(外购)负责处理电流传感器测得电流信号,通过 R-BUS 总线送出数据。尺寸和电池传感器模块一致。

3.3.1 接口描述

电流检测模块各接口连接如下图所示:

3.3.2 连接方式



第四章 系统使用

蓄电池监控系统软件是基于蓄电池主控模块操作并显示,可以查询电池组和单电池的电压、温度、电流及单电池内阻参数。参数超出阀值可在界面上显示告警信息。

状态显示区:显示电池组状态及告警状态。(红灯为有告警发生)

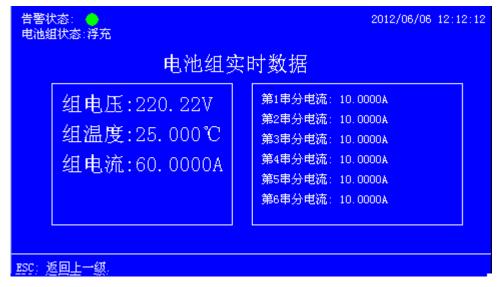
功能选择区:按相应的数字键可进入对应的菜单。

4.1 数据查询

主界面下按1键进入数据查询界面

4.1.1 电池组实时数据

可查看电池组组电压、电池组组温度、电池组组电流数据。


主界面→1.数据查询→1.电池组实时数据

组电压: 电池组的总电压。

组温度: 蓄电池工作环境温度。

组电流:被监控设备输入输出的总电流。

被监控设备有多组电池组,则每组电流值显示在右边(组电流为各分电流的和)。

4.1.2 单电池实时数据

可查看单电池实时的电压、温度、单电池内阻的详细数据及单电池状态。

主界面→1.数据查询→2.单电池实时数据

电池号:是根据现场的配置有关,如:现场有1个被监测设备下带4组电池,每组34节。则电池号配备为:第一组电池号为(1-1至1-34)、第二组电池号为(2-1至2-34)、第三组电池号为(3-1至3-34)、第四组电池号为(4-1至4-34)。

电压、温度、内阻:显示的数据为整个被监测设备下单电池实时数据。

电压、温度、内阻: 为实时数据。

状态:分告警和正常两种。出现告警,则是单电池的电压、温度、内阻数据的其中一项或者都超过阀值。

模块号:是指电池传感器模块自身硬件地址编号,每台设备下地址唯一。

告警状态: 电池组状态	。 \$:	单电池实时数据		2012	2/06/06 12:12:12
电池号	电压V	电阻πΩ	温度℃	状态	模块号
1-1	0.0000	0.0000	0.0000	正常	001
1-2	0.0000	0.0000	0.0000	正常	002
1-3	0.0000	0.0000	0.0000	正常	003
1-4	0.0000	0.0000	0.0000	正常	004
1-5	0.0000	0.0000	0.0000	正常	005
1-6	0.0000	0.0000	0.0000	正常	006
1-7	0.0000	0.0000	0.0000	正常	007
1-8	0.0000	0.0000	0.0000	正常	008
1-9	0.0000	0.0000	0.0000	正常	009
1-10	0.0000	0.0000	0.0000	正常	010
ESC: 返回」	上一级.		↑↓键	翻页	第1页/共12页

4.1.3 24 小时历史数据

可查看单体电池 24 小时历史数据

主界面→1.数据查询 → 3.24 小时历史数据

本界面可查看单电池在 **24** 小时内电压、温度、内阻、电流数据。数据粒度为分钟。

2:12:12

如: 查看电池电压 24 小时历史数据

主界面→1.数据查询→3.24 小时历史数据→1.电压 24 小时历史数据

上下翻页查看电池号、左右翻页查看各个时间点的数据

温度、内阻及电流的界面与电压的一样,进入方式:按 ESC 返回上一级→(24小时历史数据)界面分别按"2""3""4"键。

告警状态 电池组状	and the second s	电压2	24小时,	历史数	.据(V)	2012/06/08	12:12:12
模块号	10:09	10:08	10:07	10:06	10:05	10:04	10:03
001	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
002	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
003	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
004	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
005	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
006	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
007	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
008	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
009	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
010	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
ESC: 返回	上一级.	† ↓ F	世池号翻页 电池号翻页	←→时	间翻页	第1页/	/共206页

4.1.4 年历史数据查询

可查看单体电池年历史数据

主界面→1.数据查询→4.年历史数据

本界面可查看单体电池在一年内电压、温度、内阻、电流数据。数据粒度为天。

如: 查看单体电池电压年历史数据

主界面→1.数据查询→4.年历史数据→1.电压年历史数据

上下翻页查看电池号、左右翻页查看各个时间点的数据

温度、内阻及电流的界面与电压的一样,进入方式:接 ESC 返回上一级→(年历史数据)界面分别按"2""3""4"键。

告警状态 电池组状		电压	年历史	数据()	<i>I</i>)	2012/06/06	12:12:12
模块号	12/12/11	12/12/10	12/12/09	12/12/08	12/12/07	12/12/06	12/12/05
001	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
002	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
003	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
004	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
005	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
006	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
007	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
008	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
009	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
010	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
ESC: 返回	上一级.	↑↓ŧ	池号翻页	←→时间	剛页	第1]	页/共53页

4.1.5 电池组信息

可查看电池组的详细信息

主界面→1.数据查询→5.电池组信息

该数据都是根据现场配置的数据,不随电池状态变化。

4.2 告警查询

主界面→2.告警查询

4.2.1 当前告警查询

可查看电池组的当前告警信息

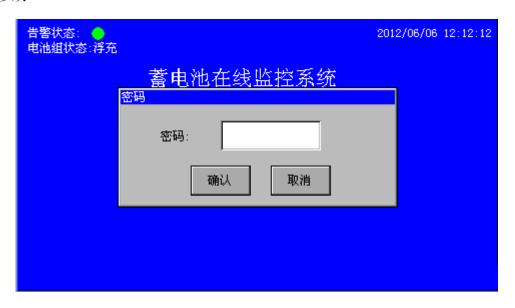
主界面→2.告警查询→1.当前告警查询

当前告警显示正在发生的告警情况,告警种类共有13种。

告警类别的详细定义参见:系统设置→告警设置。

在这个界面可以按数字键8来将告警声音关闭和开启。

4.2.2 历史告警查询


可查看电池组的历史告警信息

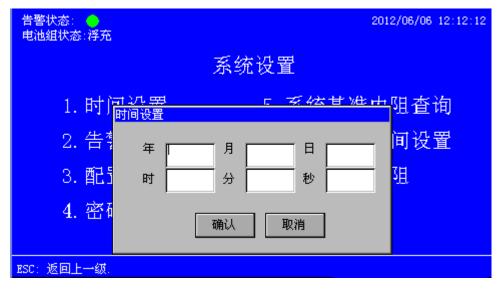
主界面→2.告警查询→2.历史告警查询

历史告警显示曾经发生过的告警。当某一项告警正在发生时会显示在当前告警中, 一旦此告警消失,则从当前告警中删除并存在历史告警中,同时显示该告警开始时间 与结束时间。

4.3 系统设置

在主界面下按 3 键可进入系统设置菜单,为避免随意更改系统设置,在进入该菜单之前需要输入密码。密码由 6 位数字组成,初始密码为 000000,用户可在密码设置中修改。

密码输入正确后将虚拟光标移到 "确认"键上,再按主控模块上的<ENT>键就会 进入系统设置界面,系统设置共有8个操作选项。



4.3.1 时间设置

可更改主控模块系统时间

主界面→3.系统设置→输入6位密码→ 1.时间设置

对话框中分别输入需要更改的时间参数,其中年为4位数字,其余为2位数字。

4.3.2 告警设置

可修改主控模块告警判断值

主界面→3.系统设置→输入6位密码→2.告警设置

告警	告警设置					12
电池组		1	*		no.	
	单电池标称放电电压	mV	单电池温度上限		°C	
	单电池标称浮充电压	mV	组放电电流上限		Å	
	单电池浮充电压上限	mV	组充电电流上限		A	
	单电池浮充电压下限	mV	组电压上限		γ	
	单电池充电电压上限	mV	组电压下限		γ	
	单电池充电电压下限	mV	单电池标称内阻		10uΩ	
	内阻变化率上限	%				
	确定		取消			
ESC: 刘	Δ (14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		_	TETETE II G	utoro.c	m

BM3000 蓄电池监控系统共有 13 种告警类别:

电池组充电电流上限: 当电池组充电电流大于此值时告警,单位 A。

电池组放电电流上限: 当电池组放电电流大于此值时告警,单位 A。

单电池温度上限: 当电池组温度大于此值时告警,单位℃。

单电池浮充电压上限: 当电池在浮充状态下(电池组在浮充状态),单电池电压大于此值时告警,单位 mV。

单电池浮充电压下限: 当电池在浮充状态下(电池组在浮充状态),单电池电压小于此值时告警,单位 mV。

单电池标准浮充电压: 定义同单电池浮充电压上限,单位 mV。

单电池标称内阻: 当电池内阻大于此值时告警,单位 $\mu\Omega$ 。

单电池标准放电电压: 当电池在放电状态下(电池组在放电状态),单电池电压小于此值时告警,单位 mV。

内阻异常值: 当内阻变化率大于此值时告警,单位%。

电池组电压上限: 当电池组的电压大于此值时告警,单位 V。

电池组电压下限: 当电池组的电压小于此值时告警,单位 V。

单电池充电电压上限: 当电池在充电状态下(电池组在充电状态),单电池电压大于此值时告警,单位 mV。

单电池充电电压下限: 当电池在充电状态下(电池组在充电状态),单电池电压小于此值时告警,单位 mV。

UPS 浮充模式下电池告警门限设置如下:

名称	2V	6V	12V
标称放电电压(mV)	1850mv	5550mv	11100mv
标称浮充电压(mV)	2350mv	7050mv	14100mv
浮充电压上限(mV)	2350mv	7050mv	14100mv
浮充电压下限(mV)	2150mv	6450mv	12900mv
充电电压上限(mV)	2350mv	7050mv	14100mv
充电电压下限(mV)	1850mv	5550mv	11100mv

4.3.3 配置查询

可对主控模块系统配置进行查询

配置查询共有 3 页,分别是系统配置数据、告警阀值信息、网口信息及开机次数 及本次开机时间。

主界面→3.系统设置→输入6位密码→3.配置查询

查询系统配置的各项数据;

MODBUS ID 是与上位机通讯时,主控模块的物理地址。

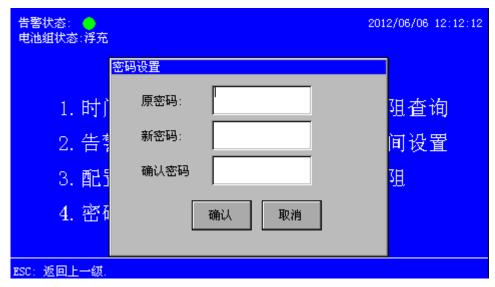
电流传感器型号与电池的安时大小有关,与电流模块及电流传感器的型号一致。 放电条件与充电条件是判断电池组的状态,放电为负电流,充电为正电流,电池

组电流小于放电条件为放电状态,介于放电状态与充电条件之间为浮充状态,大于充电条件为充电状态。

内阻测试日期为自动测试内阻的日期,显白色为选中的日期,显灰色是未选中的 日期。内阻测试时间是开始自动测试内阻的时间。

查询告警阀值的设置信息;

查询网口信息和开机次数、开机时间;



4.3.4 密码设置

可修改进入系统设置的密码

主界面→3.系统设置→输入6位密码→4.密码设置

三个对话框依次输入:旧密码、新密码、确认新密码。要求新密码和确认新密码 必须相同并且为 6 位密码。输入正确后,将光标移到确认键,按<ENT>确认修改。

4.3.5 系统基准内阻查询

可查询基准内阻值

主界面→3.系统设置→输入6位密码→5.系统基准内阻查询

上下键翻页可以查询每节电池的基准内阻值。

如果新装设备则在设备安装调试完成后,将第一次测试的内阻值保存一次,在本界面按主控模块数字键<5>提示输入管理员密码"122478"后将虚拟光标移到确认键上,按主控模块上的<ENT>键保存。

告警状态 电池组状	and the second second	į	基准内阻查询 (ωΩ)			2012/06/06	3 12:12:12
模块号	基准值	模块号	基准值	模块号	基准值	模块号	基准值
001	50,000	011	50,000	021	50,000	031	50,000
002	50,000	012	50,000	022	50,000	032	50,000
003	50,000	013	50,000	023	50,000	033	50,000
004	50,000	014	50,000	024	50,000	034	50,000
005	50,000	015	50,000	025	50,000	035	50,000
006	50,000	016	50,000	026	50,000	036	50,000
007	50,000	017	50,000	027	50,000	037	50,000
008	50,000	018	50,000	028	50,000	038	50,000
009	50,000	019	50,000	029	50,000	039	50,000
010	50,000	020	50,000	030	50,000	040	50,000
ESC: 返回	上一级。	5. 保留基	准内阻	ψ,	↓键翻页	第1	页/共3页

4.3.6 内阻测试时间设置

设置自动测试内阻的时间

主界面→3.系统设置→输入 6 位密码→ 6.内阻测试时间设置 对话框中输入时间参数,对测试内阻的时间进行更改。

告警状态: <mark>。</mark> 电池组状态: 浮充	201	2/06/06 12:12:12
	系统设置	
1. 时间处果 侧试时间设置	- 发松甘油山	阻查询
2. 告 🔠 🙀	分 [间设置
3. 配5		狙
4. 密矿	确认 取消	
ESC: 返回上一级.		

4.3.7 手动测试内阻

可进行手动测试内阻

主界面→3.系统设置→输入6位密码→7.手动测试内阻

手动测试内阻,按<7>再按<ENT>可以进行内阻测试,不测可按<ESC>键取消

4.3.8 网口设置

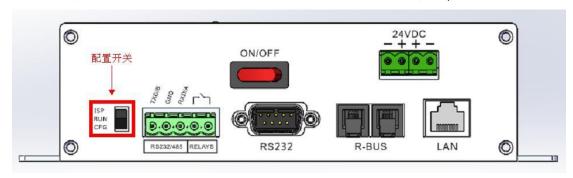
主界面→3.系统设置→输入6位密码→8.网口设置

IP: 设置当前需要的 IP 地址。

SUBMASK:设置当前的子网掩码。

GWIP: 设置当前的网关。

PORT: TCP/IP 协议端口,默认"3001"。



第五章 系统配置模式

系统配置只在需要时可进入修改,如需要将主机配置修改和电池传感器模块地址修 改等,其他时间不需要进入。

5.1 进入配置界面

将主控模块关机,找到"配置开关"将开关拨到"CFG"模式,如图:

再将主控模块开机,主控模块将进入配置界面,如图:

更改配置完成后,将主控模块关机,找到"配置开关"将开关拨到"RUN"模式, 再将

主控模块开机, 主控模块恢复正常运行。

5.2 各项说明

在此界面按数字键可以进行相应的操作:

(1) 数据清理:清理系统中保存的历史数据。

按"数字键 1"后输入管理员密码: 122478, 然后按"下方向键"至虚框选中"确定", 再按"确定键"即可进行数据清理。

(2) 系统配置:修改系统的配置信息。

按"数字键 2"后可以进行系统配置。在配置框后填入相应参数,然后按"下方向键"至虚框选中"确定",再按"确定键"即可完成配置。

(3) 内阻测试日期:修改内阻的测试频率。

按"数字键 3"后可以查询或修改内阻的测试日期,可修改内阻测试日期为每天,每周,每月测试一次。

(4) 搜索 ID (R): 搜索电池传感器模块的 ID。

按"数字键 4"后可以搜索电池传感器模块的地址。

(5) 搜索 ID(I): 搜索电流检测模块的 ID。

按"数字键 5"后可以搜索电检测流模块的地址。

(6) 修改 ID: 修改模块的 ID。

按"数字键 6"可以修改电池传感器模块或电流模块的地址,修改电池传感器模块或电流检测模块地址时,一次只能单独接一个模块。在 from 后方框填入原模块地址号,在 to 后方框,填入新地址号,然后按"下方向键"至虚框选中"ok",再按"确定键"则地址修改完成。

5.3 修改模块 ID

(1) 使主机至配置界面。

如图所示,由主机单独接一条线至需要修改的模块,移除相邻的通讯线,同时待更改模需要供电。

实物接线图如下所示:

按"数字键 6",修改地址,在 from 后方框填入原模块地址号,在 to 后方框填入新地址号,然后按"下方向键"至虚框框选中"ok",再按"确定键"则地址修改完成

若提示"Address set successfully!",则修改成功。

若初始 ID 未知,可使用"搜索 ID"搜索;

电流模块更改 ID 的过程相同。

5.4 修改配置信息

系统的配置信息包括主机 ModbusID, 电池类型, 电池串数, 串电池数, 充放电阀值, 标称容量。此项设置中所有的参数都是系统关键参数, 出厂时已预设合理的参数值, 谨慎修改。具体步骤如下:

				2	20/07/17 15:50:25
	Config				
	ModbusID	1	电池类型	12	
	电池串数	1	串电池数	40	
	充电阀值	5	放电阀值	5	
	标称容量	100			
	石	角定	取消		
Note now you					meters
through the se	rial port!				

(2) 使主机至配置界面。

按上下方向键将光标移动到需要修改的数据位置,例如将 ModbusID 由 0 修改为 2, (左右方向键为删除按钮)

按上下方向键将光标移动到<确定>位置后,按下设备的<确定>按键,修改完成。修改完成后可再次进入系统配置界面,确认是否修改成功。

第六章 告警门限设置说明

以 2 组配置,每组 32 节 100aH 电池,共计 64 节为例,具体配置如下:

电池类别:选择 12V,根据现场安装选择。

每串电池数: 32 节,根据实现场安装输入每串电池数。

串数: 2 串,根据现场安装输入电池串数。串数指的是 UPS 下并联的电池组数。

单电池标称容量值(A): 100A,根据现场安装电池实际容量,输入电池标称容量。 电流探头类型(A): 100A,根据现场安装的电池容量来选择。

放电状态电流阀值(-A): 10A,根据 5A 电流每组相加得到放电状态电流阀值。

充电状态电流阀值(+A): 10A,根据 5A 电流每组相加得到充电状态电流阀值,客户知道实际充电电流,可设置比实际小 1A。

内阻测试日期: 在内阻测试日期选择框中,选择要测试的日期,建议一个月四次。 **内阻测试时间:** 选择测试内阻的时间。

组放电电流上限: 200A,根据单电池标称容量 1C×串数。【C 代表电池标称容量】 **组充电电流上限:** 50A,根据单电池标称容量 0.25C×串数。

组电压上限: 452V, 根据单个电池充电电压上限×1 串电池个数。

组电压下限: 356V,根据单个电池充电电压下限×1 串电池个数。

UPS 浮充模式下电池告警门限设置如下:

名称	2V	6V	12V
标称放电电压(mV)	1850mv	5550mv	11100mv
标称浮充电压(mV)	2350mv	7050mv	14500mv
浮充电压上限(mV)	2350mv	7050mv	14500mv
浮充电压下限(mV)	2150mv	6450mv	12900mv
充电电压上限(mV)	2350mv	7050mv	14500mv
充电电压下限(mV)	1850mv	5550mv	11100mv

温度上限告警(℃): 45℃,

内阻变化率上限(%): 200%,

标称内阻上限(10u Ω **):** 查电池规格书内阻*2 倍或现场内阻测试平均数据*2 倍; 此处注意单位为 "10u Ω ",填写的数字应该为实际 u Ω 数除以 10,例如设置内阻上限为 5.5m Ω ,实际填写数字为 550。

质量 顾客 创造 持续 第一 满意 品牌 改进

relat瑞雷特

深圳市瑞雷特电子技术有限公司

深圳市宝安区兴华一路华创达中心商务大厦A602室

电话: +86-755-29563743

网址: Http://www.relatele.com

邮箱: sales@relatele.com